# Jambmaths

Maths Question | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Question 19 |
Find the inverse of |
||||||||||||||||

Question 20 |
A binary operation * is defined by a * 2 =2 – a. Find the possible value of a |
||||||||||||||||

Question 10 |
The identity element with respect to the multiplication shown in the table above is |
||||||||||||||||

Question 18 |
An operation *is defined on the set of real numbers by |
||||||||||||||||

Question 23 |
The binary operation $*$ is defined on the set of integers |
||||||||||||||||

Question 34 |
If the operation * on the set of integer is defined by $p*q=\sqrt{pq}$ |
||||||||||||||||

Question 45 |
An operation * is defined on the set of real numbers by $a*b=ab+2(a+b+1)$find the identity element |
||||||||||||||||

Question 34 |
A binary operation |
||||||||||||||||

Question 39 |
The binary operation defined on the set of real number is such that $x\oplus y=\frac{xy}{6}$for all $x,y\in \mathbb{R}$. Find the inverse of 20 under the operation when the identity element is 6 |
||||||||||||||||

Question 20 |
A binary operation $\oplus $ on real numbers is defined by $x\oplus y=xy+x+y$for any two real numbers |
||||||||||||||||

Question 21 |
Question 21 |
||||||||||||||||

Question 21 |
A binary operation * defined on the set of positive integer is such that that $x*y=2x-3y+2$ for all positive integers |
||||||||||||||||

Question 22 |
A binary operation on the set of real numbers excluding –1 is such that, for all |
||||||||||||||||

Question 20 |
If $m*n=n-(m+2)$for any real number |
||||||||||||||||

Question 21 |
A binary operation $\otimes $defined on the set of integers is such that |
||||||||||||||||

Question 23 |
If $x*y=x+{{y}^{2}}$, find the value of $(2*3)*5$ |
||||||||||||||||

Question 23 |
A binary operation $\oplus $on real number us defined by $x\oplus y=xy+x+y$for two real numbers |
||||||||||||||||

Question 21 |
The binary operation* is defined on the set of integers such that $p*q=pq+p-q$. Find $2*(3*4)$ |
||||||||||||||||

Question 22 |
The binary operation * is defined on the set of real numbers is defined by $m*n=\frac{mn}{2}$for all$m,n\in \mathbb{R}$. If the identity element is 2. Find the inverse of –5 . |
||||||||||||||||

Question 21 |
$\begin{align} & \text{If a binary operation }*\text{ is defined by }x*y=x+2y,\text{ find }2*(3*4) \\ & (A)\text{ }26\text{ }(B)\text{ }24\text{ }(C)\text{ }16\text{ }(D)\text{ }14 \\\end{align}$ |
||||||||||||||||

Question 21 |
A binary operation * is defined by $x*y={{x}^{y}}$ . If $x*2=12-x$ find the possible value of |
||||||||||||||||

Question 31 |
The binary operation * is defined $x*y=xy-y-x$ for real values of x and y. If $x*3=2*x$, find the value of x |
||||||||||||||||

Question3 |
A binary operation on the set of real number is defined by $x*y=\frac{x+y}{2}$ for all |